Benchmarking RCGAu on the Noiseless BBOB Testbed

نویسندگان

  • Babatunde A. Sawyerr
  • Aderemi O. Adewumi
  • M. Montaz Ali
چکیده

RCGAu is a hybrid real-coded genetic algorithm with "uniform random direction" search mechanism. The uniform random direction search mechanism enhances the local search capability of RCGA. In this paper, RCGAu was tested on the BBOB-2013 noiseless testbed using restarts till a maximum number of function evaluations (#FEs) of 10(5)×D are reached, where D is the dimension of the function search space. RCGAu was able to solve several test functions in the low search dimensions of 2 and 3 to the desired accuracy of 10(8). Although RCGAu found it difficult in getting a solution with the desired accuracy 10(8) for high conditioning and multimodal functions within the specified maximum #FEs, it was able to solve most of the test functions with dimensions up to 40 with lower precisions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benchmarking the (1,4)-CMA-ES With Mirrored Sampling and Sequential Selection on the Noiseless BBOB-2010 Testbed [Black-Box Optimization Benchmarking Workshop]

The well-known Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a robust stochastic search algorithm for optimizing functions defined on a continuous search space R. Recently, mirrored samples and sequential selection have been introduced within CMA-ES to improve its local search performances. In this paper, we benchmark the (1,4m)-CMA-ES which implements mirrored samples and sequent...

متن کامل

Investigating the Impact of Sequential Selection in the (1,4)-CMA-ES on the Noiseless BBOB-2010 Testbed [Black-Box Optimization Benchmarking Workshop]

This paper investigates the impact of sequential selection, a concept recently introduced for Evolution Strategies (ESs). Sequential selection performs the evaluations of the different candidate solutions sequentially and concludes the iteration immediately if one offspring is better than the parent. In this paper, the (1,4)-CMA-ES, where sequential selection is implemented, is compared on the ...

متن کامل

Black Box Optimization Benchmarking of the GLOBAL Method

GLOBAL is a multi-start type stochastic method for bound constrained global optimization problems. Its goal is to find the best local minima that are potentially global. For this reason it involves a combination of sampling, clustering, and local search. The role of clustering is to reduce the number of local searches by forming groups of points around the local minimizers from a uniformly samp...

متن کامل

COCO: The Bi-objective Black Box Optimization Benchmarking (bbob-biobj) Test Suite

The bbob-biobj test suite contains 55 bi-objective functions in continuous domain which are derived from combining functions of the well-known single-objective noiseless bbob test suite. Besides giving the actual function definitions and presenting their (known) properties, this documentation also aims at giving the rationale behind our approach in terms of function groups, instances, and poten...

متن کامل

Benchmarking the (1,4)-CMA-ES With Mirrored Sampling and Sequential Selection on the Noisy BBOB-2010 Testbed [Black-Box Optimization Benchmarking Workshop]

The Covariance-Matrix-Adaptation Evolution-Strategy (CMA-ES) is a robust stochastic search algorithm for optimizing functions defined on a continuous search space R. Recently, mirrored samples and sequential selection have been introduced within CMA-ES to improve its local search performances. In this paper, we benchmark the (1,4m)CMA-ES which implements mirrored samples and sequential selectio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015